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time tag device were used for the two terminals. The critical issue of time synchronization between the two terminals 
was bypassed via a common trigger/clock for the two channels of the time tag device. This system relies on a single 
clock for recording the arrival times of the local reference pulses and the remotely launched pulses on the two terminals. 
	
In a practical implementation over planetary ranges (e.g. one terminal on Earth and the other on Mars) a common 
trigger/clock is not feasible and a clock synchronization method needs to be devised. Below, we describe the 
development of a synchronization scheme for active laser raging, and successful implementation of the real-time laser 
ranging system with two asynchronous terminals 10s of meters apart.  
 

2.   APPROACH 
 

Fig. 2 is a schematic of the timing diagram of two terminals for asynchronous (paired one-way) ranging. Pulses are 
transmitted from each terminal to the other independently. An instantaneous range R between the two terminals is 
evaluated from 
  

R=[t3(j)-t0(i)+t2(i)-t1(j)]c/2       (1) 
 
where c is the speed of light, t0(i) refers to the time of the ith pulse launched and received by Detector A at the Earth 
terminal, t3(j) represents the arrival time of the jth pulse at Detector A of the Earth terminal launched from the Mars 
terminal, t1(j) stands for the time of the jth pulse arriving at the Mars Detector B launched from the Mars terminal, and 
t2(i) the arrival time of the ith pulse at Mars terminal Detector B launched from the Earth terminal. Since the range is 
computed from differences in recorded times, transmitter jitters and detector delays are cancelled out. 

 
Figure 2. Schematic of active laser ranging with two asynchronous terminals. 

 
To use Equation (1) for the range estimation correctly, pulses received on a local detector must be synchronized with the 
corresponding one at the remote terminal, i.e., the ith pulse launched from the Earth terminal and received at t0 by the 
local detector must be paired with the ith pulse received at t2 by the remote detector, and the jth pulse launched from the 
Mars terminal received at t1 locally must be paired with the jth pulse detected at t3 at the Earth terminal. This 
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synchronization is a simple process with a common trigger/clock applied to each of the two terminals. However, when 
the two terminals are far apart and a common trigger/clock is not practical, a synchronization scheme needs to be 
implemented.  
 
The approach used here to synchronize the two terminals involves launching two different coded sequences of pulses 
from the two lasers. By comparison with the codes using autocorrelation technique, the origin of each detection event 
(Earth terminal or Mars terminal) can be identified, along with the position in the sequence (the index i or j of each 
pulse). Our demonstration used simple repeating coded words; however, more complex codes could be used to increase 
the ambiguity range. For synchronization and range estimation, the recorded time tags at one terminal need to be 
transmitted to the other terminal. This can be achieved via free space laser communications or RF communications. The 
interplanetary laser ranging system could potentially be combined with interplanetary laser communications, and most of 
the hardware, including the laser, telescope, pointing system, and high-speed detector could be shared between the 
systems.9 A communication system would require the addition of a timing system and a timing reference path to enable 
it to be used for ranging, and a ranging system could perform laser communications by adding modulation capability. 
 
To reduce the random error, the range estimate is computed for each of many pulse pairs, and the estimates are averaged.  
The random error in the averaged estimate is inversely proportional to the square root of the total number of pulse pairs 
used for averaging. Using multiple pulse pairs also allow the clocks at each terminal to be compared and any 
discrepancy to be corrected. For example, a constant frequency difference in the clocks at the two terminals can be 
corrected by using two consecutive sets of four time tags, namely, t0(i), t2(i), t1(j), t3(j), t0(i+1), t2(i+1), t1(j+1), t3(j+1). 
The correction factor is 

		 	 	 			  
which converts the time differences recorded from terminal B to terminal A by tA=tB. 12  
 
 

3. SYSTEM DESIGN AND EXPERIMENTS 

The active laser ranging link can easily be established at the maximum separation between the Earth and Mars of 2.7 
AU.  Consider, for example, a system using a 1-m ground telescope with a 1-W 1064-nm laser at the Earth terminal and 
a 15cm diameter telescope with a 0.1-W laser at 1064-nm at the space terminal, and assume transmit and receive optical 
efficiency to be 0.4, atmospheric transmittance of 0.5 and detector quantum efficiencies of 0.30. Link budget analysis 
shows that the ground terminal will detect 76 photons/second and the detector at the space terminal will receive 756 
photons/second. When applying these example parameters to the longer separation of 6.2 AU (distance to Jupiter), the 
received count rate is reduced to 14 photons/second at the ground terminal, and 143 photons/second at the Jupiter 
terminal (following 1/R2 scaling).  

3.1 Laboratory experiments 
	
To emulate the above scheme for active laser ranging over interplanetary distances, we built two separate terminals 
using commercial off-the-shelf hardware. A diagram of the laboratory experiment is shown in Fig. 3. Mode-locked lasers 
with pulse widths of 4 ps at 1064 nm and 5 ps at 1550 nm generated the optical signals. The use of different wavelengths 
for the two lasers was a matter of convenience and is not necessary for the system. The optical pulses were modulated 
and coded with FPGA boards (Digilent Inc.).	The	laser light is	collimated and directed to a beam splitter, where some of 
the light is diverted to a reference arm. The light that passes through the beam-splitter travels to the other terminal 
through a steering mirror. Photons that arrive at the second terminal are combined with the light from the reference arm 
via the beamsplitter and focused on to an InGaAs detector. Each terminal was mounted on a translation stage with a 
micrometer reading. These translation stages were used to vary the separation between the two terminals.  
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Figure 8. Field experiment results. (a) Measured range versus the change in actual range from translating the terminals. 
The filled circles in red indicate the experimental results. The black curve is a line with a unit slope and an offset chosen 
to minimize deviation from the data.  (b) Deviation of the estimates in (a) from the line. Blue diamonds indicates the 
field experimental results. Each data point represents 1000 sample measurements.	
	

4. CONCLUSION 

We have demonstrated the real-time active laser ranging using a method applicable to interplanetary distances. Sub-
millimeter ranging accuracy has been achieved with the systems built from off-the-shelf commercial components,  
demonstrating the robustness of the scheme. The experimental results indicate that active laser ranging can be 
implemented for interplanetary distances to meet the goal of 1mm ranging accuracy, including the effects of the Earth’s 
atmosphere. This paves the way for advances in the study of fundamental physics and solar system dynamics. 
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